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It is known from experimental study of the sorption of some aromatic compounds (such as p-xylene)
in zeolites with the MFI lattice that the adsorption kinetics in such systems exhibits appreciable de-
viations from the 2nd Fick law. To account for those deviations, whose origin lies in the crystal bulk,
the existence of two phases which are not in local chemical equilibrium is postulated: a mobile phase
is assumed to occur in the straight zeolite channels whereas an immobile phase is assumed in the
zig-zag channels. A microkinetic model is proposed assuming localization of the sorbed molecules on
two kinds of centres arranged in a regular two-dimensional lattice, along which migration takes place
in agreement with the Langmuir kinetics of exchange of molecules between the occupied and unoc-
cupied centres. For an exact description of the time evolution of the considered physical system the
model results in a set of ordinary differential equations which are transformed into a system of two
partial differential equations providing a spatially continuous description of the physical system. This
approach enables the phenomenological kinetic parameters to be interpreted in terms of the jump fre-
quency of molecules between the various kinds of adsorption centres. For small perturbations in the
concentration of the sorbing substance the mathematical model is linearized, and the behaviour of the
system is illustrated using the numerical solution of the model equations. In dependence on changes
in the model parameters, the transition from the case of pure diffusion along a one-dimensional lat-
tice in the mobile phase, with the zig-zag channels inaccessible, via the case of a slowly establishing
local equilibrium between the two sub-lattices, to the limiting case of instantaneously establishing
local equilibrium between the sub-lattices is discussed.

Appreciable deviations from the kinetics obeying the 2nd Fick law have been observed
in the sorption of some benzene derivatives in zeolites with the MFI structure1 – 4. The
anomalies are strongly dependent on the zeolite synthesis and its previous treatment.
Deviations of such kind, where additional resistance to the transport of the sorbing
substance in the zeolite surface layer (suggested, e.g., in ref.4) does not play a major
role, can be accounted for in terms of the hypothesis that in the crystal there exist
groupings of spatially close centres of several types between which a local equilibrium
is not established instantaneously. Thus, the intracrystalline space of the zeolite acts as
a two-phase space.
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The anomalous sorption kinetics of this kind cannot be treated without an adequate
microkinetic model. The model conception concerning the disturbance of the local
equilibrium in the crystal must lean on available facts regarding the shape of the chan-
nels in the MFI-structure and the packing of the sorbing molecules in them. The necess-
ary facts are summarized below.

The arrangement of channels in zeolites of the MFI structure is schematically shown
in Fig. 1: the void space of the zeolite contains two kinds of intersecting channels, i.e.
straight channels, which are parallel to the crystallographic b axis, and zig-zag chan-
nels, which are parallel to the a axis. The channel dimensions given in Fig. 1 caption
refer to silicalite 1 and were taken from ref.5, whereas ref.6 reports somewhat different
dimensions. Other details concerning the structure of MFI zeolites, the shape and
dimensions of the oxygen windows which are responsible for the channel permeability,
as well as data on the location of molecules of aromatics (p-xylene, benzene) in the
MFI zeolite lattice are summarized in refs7 – 21. No such data pertaining to the location
of p-ethyltoluene in the MFI lattice, which is the object of our interest, have been
published.

The present knowledge of this matter can be summarized as follows:
a) Channels of both types can host molecules of benzene and p-xylene.
b) The straight channels are better accessible for adsorption and diffusion than the

zig-zag channels.
c) Sorption of the molecules mentioned has a localized character with one centre in

the straight channels in the space of the channel intersection (segment III in Fig. 1) and
one centre in the zig-zag channels (segment I).

With some circumspection, statements a) through c) can be extrapolated to p-ethyl-
toluene. In the assessment of the accessibility of the zig-zag channels we lean on our

FIG. 1
Layout of channels in the MFI structure. The
following length parameters (in nm) are as-
sumed for silicalite 1: d 0.54, d1 0.51, d2 0.57,
LI 0.665, LII 0.45, LIII (= d) 0.54, L 2.006. One-
quarter of the elementary cell is represented by
the union of spaces I, II, III

1002 Kocirik, Zikanova, Dubsky, Krocek:

Collect. Czech. Chem. Commun. (Vol. 59) (1994)



own measurements where 5.62 molecules of p-ethyltoluene were adsorbed per unit
cell22. This sorbed amount – which is certainly not the limitting one – exceeds by 1.62
molecules the assumed sorption capacity of the straight channels for benzene and
p-xylene.

Based on these premises, we confine ourselves to a model of localized sorption on a
two-dimensional lattice of sorption centres. The simplest conception which is consist-
ent with the observed deviations from the 2nd Fick law is that the molecules of the
sorbing substance move freely through the straight channels in the one-dimensional
sorption site sub-lattice. We will refer to this fraction of sorbate molecules as the
“mobile phase”. Furthermore, we assume that the process of slow filling of the zig-zag
channels is responsible for the disturbance of the local equilibrium. The sorption sites
in the zig-zag channels thus form another sub-lattice for localized sorption (henceforth
referred to as the “immobile phase”). The term “mobile phase” should not be inter-
preted as non-localized adsorption.

THEORETICAL

Sorption Kinetics and Migration in the Two-Dimensional Lattice of Sorption Sites

To simulate the deviations from the 2nd Fick law we will use the lattice shown in
Fig. 2. There are two types of centres in the lattice. Centres denoted by the sign X, in
which the molecules are mobile, and centres denoted by boxes, in which the molecules

FIG. 2
Two-dimensional lattice of sorption sites in the MFI structure; the symbols X represent sorption sites
in the mobile phase, the boxes represent sorption sites in the immobile phase
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are immobile. The adsorption centre planes through which the mass flow of the sorbing
substance is regarded are oriented perpendicularly to the drawing plane and are labelled
by number j starting with j = 0 at the crystal surface. The spacing of the planes is λ. In
the formulation of the kinetic equations describing the rate of occupation of the lattice
layers starting from the crystal surface it is convenient to express the concentration of
the molecules via the amount of substance per unit area in the plane perpendicular to
the transport direction (i.e., in mol m−2). In this representation, all terms expressing the
contributions to the rate of concentration increase of the mobile or immobilized compo-
nents in the given plane will have the meaning of mass fluxes. Denote the concentration
of the X type centres b∞ and the concentration of the “box” type centres u∞. The con-
centrations of the mobile and immobilized molecules will be b and u, respectively. In
the case chosen we have b∞ = u∞. No immobilization centres are assumed on the crystal
surface, i.e. in the plane with j = 0. The concentration of the mobile molecules on the
crystal surface is denoted bS, hence b0 = bS.

We assume that the Langmuir model holds true for the occupation of all kinds of
centres. The concentration of vacant sites, or the probability of their occurrence in a
given site of the sorption space, plays a major role in that model. Thus, we write the
following equations for the rate of population of occupied centres of the two kinds:

dbS/dt   =   kab∞θSp  − kdbS  −  i0   =   iS  −  i0 (1)

dbj/dt   =   ij − 1  −  ij  − kbuu∞bjη j  +  kubb∞ujθj (2)

duj/dt   =   kbuu∞bjη j  −  kubb∞ujθj           (3)

(j = 1, . . ., jmax) .

Here ka and kd are the adsorption and desorption rate constants, respectively, on the
crystal surface, kbu and kub are the immobilization and mobilization rate constants, re-
spectively, p is pressure, t is the time coordinate, and θj and η j are the fractions of
unoccupied centres in the j-th plane in the mobile and immobile phases, respectively,

θj   =   (b∞ −  bj)/b∞  (4)

η j   =   (u∞ −  uj)/u∞ . (5)
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These quantities have the meaning of probabilities that the jumping molecule finds the
site unoccupied. The quantities i0, ij − 1 and ij in Eqs (1) – (3) are the mass flow densities
in the mobile phase in the direction perpendicular to the j-th plane; ij is the mass flux
in the space between the planes labelled j and j + 1 and it is a vector whose direction is
towards the higher subscript. The quantity iS is the density of the mass flux from the gas
phase into the crystal.

The flux terms are written, in agreement with the Langmuir kinetics, in the form

ij − 1   =   kbbb∞bj − 1θj −  kbbb∞bjθj − 1     (6)

ij   =   kbbb∞bjθj + 1  −  kbbb∞bj + 1θj , (7)

where kbb is the rate constant of the quasichemical reaction for the exchange of the
sorbed molecule at the given adsorption site with a vacancy at the neighbouring site.
Equations (6) and (7) involve the implicit assumption that such exchange can only take
place between nearest neighbour sites. This assumption is warranted in view of the
profound analogy between the zeolite systems considered and solid phases containing
bulky impurity or interstitial atoms.

Now, let us consider Eq. (2) for a moment without the source terms. By substituting
from Eqs (6) and (7) into Eq. (2) we obtain Eq. (8) for the rate of accumulation of
mobile molecules in the j-th layer:

dbj/dt   =   Γj − 1,j bj − 1  −  Γj,j + 1 bj  −  Γj,j − 1 bj  +  Γ j + 1,j bj + 1 . (8)

Thus, we obtain a relation known from the transport of atoms or ions in the solid phase
(cf., e.g., ref.22), which contains the jumping frequency Γ j − 1,j. This is the number of
completed jumps (failed attempts are excluded) per time unit for a molecule from a
given centre in the plane labelled j − 1 to the neighbouring centre in the plane
labelled j. We have

Γj − 1,j   =  kbbb∞θj;     Γj,j + 1   =   kbbb∞θj + 1 ;

Γ j,j − 1   =   kbbb∞θj − 1;     Γj + 1,j   =   kbbb∞θj . (9)

The system considered, obeying the Langmuir model for a quasichemical reaction of
molecule exchange between the sites in mobile phase, has the following remarkable
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property. Taking into account the fact that by definition of the fraction of vacant sites
in the mobile phase (Eq. (4)) we have for any j:

b∞θj  +  bj  =  b∞     , (10)

we can write Eq. (8) in the form

dbj/dt  =  Γ0(bj−1  −  2 bj  +  bj + 1)  , (11)

where Γ0 = kbbb∞ is the jump frequency of a molecule to a chosen neighbouring site in
the case of zero filling of the sorption space, i.e. for the situation where θj → 0. How-
ever, the jump frequency Γ0, which is independent of the degree of coverage, rules the
microdynamics across the entire concentration region b ∈  <0,b∞>. This property has
already been reported in the literature for single phase systems23. By completing Eq. (11)
with the source terms and combining the definitions (4) and (5) and Eqs (2) and (3) we
obtain kinetic equations describing the time dependence of population of the occupied
sites in the two sub-lattices:

dbj/dt  =  Γ0(bj − 1  −  2 bj  +  bj +1)  −  kbubj(u∞  −  uj)  +  kubuj(b∞  −  bj) (12)

duj/dt  =  kbubj(u∞  −  uj)  −  kubuj(b∞  −  bj)   (j  =  1, ...., jmax)    . (13)

This system of equations provides an exact description of the sorption kinetics if addi-
tional conditions characterizing (i) the interaction of the system with its environment
and (ii) the state of the system at the beginning of the experiment are included.

Examine the situation at a constant concentration of the mobile phase on the crystal
surface, i.e.

bj = b0  for j = 0, t ≤ 0,   bj = bS  for j = 0, t > 0 (14)

and with a homogeneous starting spatial distribution of the substance in the two phases,
i.e.

bj = b0  for j = 0, ..., jmax, t = 0

uj = u0  for j = 1, ..., jmax, t = 0 . (15)
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Equations (14) and (15) must be complemented with a condition relating to the sur-
roundings of the plane labelled jmax, which is the crystal symmetry plane. This condi-
tions is

bjmax−1  =  bjmax
    . (16)

The use of discontinuous models is applicable in some cases, and analytical solutions
have been obtained for a number of problems of this kind (see, e.g., ref.24). However,
in the case of the system of Eqs (12) – (16), which include concentration-dependent
source terms, we decided to seek to this dynamic model with a high dimension a corre-
sponding continuous model, consistent with the Langmuir sorption kinetics in a two-
phase system (model of ideally localized sorption).

Continuous Model of Sorption Kinetics in the Two-Phase System

Model of ideally localized sorption. The fact has to be borne in mind that if a dy-
namic model with an infinite dimension is attributed to a model with a finite – although
high – dimension, the former exhibits some type of asymptotic behaviour in time of the
latter. This has been demonstrated, e.g., by Kelly25 for the case of diffusion into a plate,
where the effect of the source terms was ignored. Therefore, we do not require a full
equivalence of the two models; we only require that the validity of the discontinuous
model derived in the present paper. i.e. Eqs (12) – (16), shall follow from the con-
tinuous model to be designed.

Since the term

(bj − 1  −  2 bj  +  bj + 1)/λ2

is a difference approximation to the partial derivative (∂2b/∂y2)t,yj
 of the function b(t,y)

which is continuous in time as well as in the spatial coordinate y oriented parallel to the
crystallographic b axis (yj = j λ), we shall regard the function b(t,y) as an approximation
to the solution of the system of Eqs (12) – (16) provided that it satisfies the system of
partial differential equations

∂b/∂t  =  Db(∂2b/∂y2)  −  ∂u/∂t (17)

∂u/∂t  =  kbub(u∞ − u)  −  kubu(b∞ − b) (18)

for t > 0, 0 ≤ y ≤ Lb  ≡ jmax λ .
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The conditions (14) – (16) transform into

b  =  b0   for   y  =  0 , t ≤ 0

b  =  bS   for   y  =  0 ,  t > 0 (19)

b  =  b0   for  0  <  y  <  Lb ,  t  =  0

u  =  u0   for   0  <  y  <  Lb ,  t  =  0 (20)

∂b/∂y  =  0   for   y  =  Lb ,  t  ≥  0   . (21)

It is evident that the application of the straight lines method (see, e.g., ref.26) to this
system of equations, when discretizing the spatial coordinate y with a step of λ and
using the above difference approximation for the 2nd partial derivative term in Eq.
(17), transforms the problem represented by Eqs (17) – (21) into that represented by
differential-difference equations (12) – (16). Hence, validity of the continuous model
implies validity of the discontinuous model, whereas the reverse is not true.

The function u(t,y) is a continuous function of the coordinates t and y in Eqs (17) and
(18) and replaces the system of functions uj from Eqs (12) and (13). The corresponding
time derivatives of the functions bj and uj are replaced by the corresponding partial
derivatives in Eqs (17) and (18). The term Lb is the distance of the crystal symmetry
plane from its surface (hence the crystal half width), and Db is the diffusion coefficient
in the mobile phase, for which

Db = Γ0λ2 . (22)

This expression has been obtained by introducing the second partial derivative with
respect to y in Eq. (12) after extending the term bj − 1  −  2 bj  +  bj + 1 with λ2. When
treating the diffusion of atoms in a solid, an alternative expression is used for the diffu-
sion coefficient in terms of the total jump frequency ν and the coordination number z,
which represents the number of nearest-neighbour sites to the adsorption centre con-
sidered (in the phase in question), to which the sorbate molecule can jump. The term ν0

is the total number of completed jumps in a time unit to some of the nearest-neighbour
sites in the mobile phase. Since we have ν0 = Γ0z and, in our case, z = 2, we can write
the diffusion coefficient Db as

Db = (ν0/2)λ2. (23)
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Transition from the concentrations b and u, per unit area, to the concentrations b′ and
u′  per unit crystal volume is a straightforward step in the continuous model. We have

b  =  λb′   ,  u  =  λu′  ,  b∞  =  λb∞′  ,  u∞  =  λu∞′  . (24)

By inserting from Eq. (24) in Eqs (17) – (21) we obtain the primed quantities in place
of the unprimed, and the rate constants kbu and kub are replaced by the constants γ and µ
which are

γ = λkbu,  µ = λkub . (25)

Introducing those new constants in Eq. (18) we can omit the primes for the sake of
simplicity, the concentrations, however, will have a new dimension, e.g. mol m−3.

The model derived exhibits a similarity to the immobilization models designed to
describe the process of textile fibre dyeing (e.g. ref.27). There is, however, a substantial
difference: in the latter case the mobile phase is constituted by a virtually free liquid in
the porous fibre structure, so that the mobilization process resembles desorption into a
gas, with no participation of vacant sites in the mobile phase. This fact is mirrored,
among other things, by the equilibrium properties of the system, which we are not
going to analyze because they are the subject of a separate study. We shall only touch
the problem briefly in relation to the generalization of the above kinetic model.

Generalized Model of Sorption Kinetics in the Two-Phase System 

The first straightforward step in generalizing the model consists in abandoning the as-
sumption of ideally localized sorption. This step will manifest itself immediately in a
different form of the dependence of the boundary condition for Eq. (17) on the sorbate
pressure.

The above model, which satisfies conditions of the Langmuir sorption kinetics, can
be characterized by the following condition for the mobile phase:

b(t,y)  =  bS  =  (b∞B1p)/(1 + B1p)   at  t → ∞ ,  0 ≤ y ≤ Lb  , (26)

where

B1 = ka/kd  . (27)

We shall use the Bragg–Williams model28 as a model of localized sorption with inter-
molecular interactions which also involves phase transitions in the sorption layer. Con-
sistent with the formalism of this paper, the adsorption isotherm equation is expressed
as a dependence of the equilibrium pressure on the vacant site fraction θ:
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p = [(1 − θ)/(B1θ)] exp [(zw/RT)(1 − θ)] . (28)

Unless the molecules of the sorbing substance in the mobile phase interact with
molecules in the immobile phase, the quantity B1 has the same meaning as in Eq. (26).
The quantity z is the number of neighbouring sites in the mobile phase, hence z = 2.
The quantity w is the energy of pair interaction between two molecules in the mobile
phase per unit amount of substance of molecules in the mobile phase; we have w < 0
for attractive interaction. The terms R and T are the universal gas constant and absolute
temperature, respectively.

Although the surface concentration bS as a function of pressure p of the sorbing
component cannot be expressed explicitly from Eq. (28), this equation specifies
uniquely the new boundary condition for the equation of mass balance in the mobile
phase (see Eq. (19)), replacing thus the specification of the previous boundary problem
which was given by Eq. (26).

A next thing which has to be re-examined is the concentration independence of the
diffusion coefficient Db. As it seems, this independence can be interpreted as a conse-
quence of compensation of two counteracting effects. In the analysis we shall use the
relation between the diffusion coefficient DA of the component in a binary solution and
the so-called corrected diffusion coefficient DAc, deduced using the thermodynamics of
irreversible processes for liquid and solid solutions to correct the diffusion coefficient
measured in given conditions to the conditions of the thermodynamically ideal solu-
tion29:

DA = DAc dln pA/dln CA  , (29)

where CA is the concentration of component A in solution and pA is the local equili-
brium pressure of component A corresponding to concentration CA. Equation (29) is
applicable to our problem provided that the condition of local equilibrium within the
mobile phase is satisfied. This fundamental assumption can also be made in the absence
of a local equilibrium between the phases. In our case, however, this assumption is only
a working hypothesis which has to be verified within further study. Adopting now this
hypothesis, we can replace the values DA, DAc, pA and CA in Eq. (29) by Db, Dbc, p and
b, respectively, regarding the corresponding zeolite centres as the other component of
the binary solution. Now, if the fraction θ in Eq. (4) is defined in terms of the vacant
sites in the mobile phase (and the corresponding function which is continuous in the
spatial coordinate y is employed in that equation), and the local equilibrium in the
mobile phase is described by means of Eq. (26), the correction factor (dln p/dln b)
attains the value

(dln p)/(dln b) = 1/θ. (30)
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When passing from the discontinuous model to the continuous model, the coefficient
Db was found concentration-independent. In view of the relation (30), however, this
concentration independence is only possible if the corrected diffusion coefficient Dbc

obeys the relation

Dbc = Db0cθ , (31)

where Db0c is the corrected diffusion coefficient value at zero coverage of the sorbent.
By characterizing the mobility of the molecule on the unloaded sorbent, this quantity is
of similar importance for the zeolitic diffusion as the Henry constant for equilibrium
sorption. An equation for the mobility of the molecules of the component in the con-
densed phase where – as in Eq. (31) – the mobility is proportional to the fraction of
vacant sites, has been derived by Barrer and Jost30.

The compensating effect, however, cannot be expected if the Bragg–Williams model
with lateral interactions is regarded instead of the model of ideally localized sorption.
In this case the factor to determine the corrected diffusion coefficient is

(dln p)/(dln b) = 1/θ + (2 w/RT)(1 − θ) (32)

and the dependence for Dbc can be expected in the form

Dbc = (ν0/2) λ2θ exp [(2 w/RT)(1 − θ)] = (ν/2)λ2θ , (33)

where ν is the total jumping frequency respecting the increase in the self-diffusion
activation energy by a value corresponding to the pair interaction between the adsorbed
molecules according to Bragg and Williams. The quantity ν0 is also assumed to obey
the Arrhenius dependence on temperature, which is given by the temperature depend-
ence of the constant B1. By inserting from Eqs (32) and (33) in Eq. (29) we obtain the
diffusion coefficient Db in the form

Db = (ν/2)λ2[1 + (2 w/RT)θ(1 − θ)]. (34)

Since w < 0 for attractive interaction, the diffusion coefficient in the Bragg–Williams
model with attractive interactions between the molecules at θ < 1 is lower than in the
case of ideally localized sorption. Equation (34) meets the conditions of transition to
the model of ideally localized sorption because Db becomes concentration-independent
at w = 0.

The above relations indicate that independence of the diffusion coefficient Db of the
degree of sorbent coverage can be expected for the Henry and Langmuir adsorption
isotherms only. In other cases the equation for the mass balance in the mobile phase (cf.
Eq. (17)) must be transformed so that the diffusion coefficient Db stands after the ∂/∂y
operator, hence the diffusion flux divergence term have the form ∂[Db(∂b/∂y)]/∂y  .
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Linearization of the Models

The two models treated are nonlinear and so they can only be solved by numerical
methods. However, kinetic experiments are usually performed in such a manner that
small stepwise perturbations in the surface concentration of sorbate are imposed on the
system which has been brought in equilibrium. Such measurements enable the concen-
tration dependence of the kinetic parameters to be obtained by means of the following
linearized model.

Consider a zeolite crystal in equilibrium with the sorbing substance having an equili-
brium pressure p* so that

b  =  b∗  ,  u  =  u∗    for  0 ≤ y ≤ Lb  . (35)

The actual concentrations of the sorbing substance in the two phases can be expressed
as

b  =  b∗   +  ∆b ,   u  =  u∗   +  ∆u  . (36)

Taking into account the facts that (i) b* and u* are independent of the time and spatial
coordinates, (ii) Db(b∗   +  ∆b)  ≈  Db(b∗)   ≡  Db∗  , and (iii) the quantities b *and u* are
interrelated by

γb∗ (u∞  −  u∗)   =  µu∗ (b∞  −  b∗) (37)

due to the equilibrium between the phases, we obtain, after substituting from Eqs (36)
and (37) in Eqs (17) – (21) including the definitions (25), a system of linear equations
describing the boundary problem for functions ∆b and ∆u

∂∆b/∂t  =  Db
∗  ∂2∆b/∂y2  −  ∂∆u/∂t (38)

∂∆u/∂t  =  γ∗ ∆b  −  µ∗ ∆u  , (39)

where

γ∗   =  γ(u∞  −  u∗ )  +  µu∗  ,    µ∗   =  µ(b∞  −  b∗ )  +  γb∗   .

Furthermore,

∆b  =  0   for   y  =  0 ,   t ≤ 0

∆b  =  ∆bS   for   y  =  0 ,  t > 0  , (40)
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where ∆bS  =  bS  −  b∗  .
The initial conditions (20) are transformed into

∆b  =  0   for   0  <  y  <  Lb ,  t  =  0

∆u  =  0   for   0  <  y  <  Lb ,  t  =  0  . (41)

The symmetry condition (21) takes the form

∂∆b/∂y  =  0   for   y  =  Lb ,  t ≥ 0  . (42)

The problem described by Eqs (38) – (42) can be solved analytically, the solution is
given, e.g., in monograph31; an alternative solution is suggested in ref.32.

The amount of substance accumulated in the sorbent from the beginning of the ex-
periment to the time t is an experimentally observable quantity. This amount nor-
malized by the amount of substance sorbed to the equilibrium is referred to as the
relative sorbent saturation f(t). Based on the solution of the problem (38) – (42), the
function f(t) can be expressed as follows:

f(t) = gfb(t) + (1 − g)fu(t) (43)

fb(t)  =  [∆b
_
(t)/∆b(∞)] (44)

fu(t)  =  [∆u
_
(t)/∆u(∞)] (45)

g  =  ∆b∞/[∆b(∞)  +  ∆u(∞)]  =  µ∗ /(µ∗   +  γ∗ )  =  1/(1  +  Kub
∗ ) (46)

∆b
_
(t)  =  

1
Lb

 ∫ 
0

Lb

∆b (y,t) dy (47)

∆u
_
(t)  =  

1
Lb

 ∫ 
0

Lb

∆u (y,t) dy  . (48)

The quantity Kub
∗  in Eq.(46) is the effective equilibrium constant expressed in terms of

the ∆u(∞)/∆b(∞) ratio.
Figure 3 shows simulated kinetic curves f vs t1/2 obtained by means of the ZEUS simula-

tor33 (ZEolite Uptake Simulator) by Micke. Constant values of Db
∗  = 1.5 . 10−14 m2 s−1,

2 Lb = 5 . 10−6 m and γ*/µ* = 1 were used. The mobilization rate constant µ*, which
varies across six orders of magnitude, is the curve system parameter. In the region of
low µ* values the immobile phase space appears to be virtually inaccessible to mole-
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cules occurring in the mobile phase space. The sorption kinetics is controlled by the
rate of jumps of molecules along the one-dimensional lattice and in the continuous
model is exactly described by the solution of the 2nd Fick law. If all kinetic curves in
Fig. 3, including this limiting case, are normalized in accordance with Eq. (43), we
obtain for this particular case the relation

limt → ∞ f  =  g  . (49)

The situation where the equilibrium establishes instantaneously is the other limiting
case. This is a case where µ∗  → ∞ . Also in this case, the sorption kinetics is exactly
described by the solution of the 2nd Fick law, the effective coefficient Deff, however,
must be applied in the form

Deff  =  Db
∗ g  =  Db

∗ /(1 + Kub
∗ )   . (50)

There is a continuous transition between the two limiting cases, where the area
bounded by the kinetic curve, the t = 0 straight line, and the f = 1 straight line decreases
with increasing value of the mobilization constant µ*. This area is numerically equal to
the first statistical moment of the kinetic curve and characterizes the time constant MΣ
of the kinetic process,

MΣ  =  ∫ 
0

1

t df  . (51)

For the model discussed we derived the expression

MΣ  =  Lb
2 (1 + Kub

∗ )/3 Db  +  [Kub
∗ /(1 + Kub

∗ )](1/µ∗ )  . (52)

FIG. 3
Simulated f vs t1/2 dependences for Db = 1.5 .
10−14 m2 s−1, Lb = 5 . 10−6 m, γ* = µ*; µ* (s−1):
1 1 . 10−6, 2 2 . 10−5, 3 4 . 10−5, 4 8 . 10−5, 5
2 . 10−4, 6 8 . 10−4, 7 2 . 10−3, 8 1 . 100
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Two consistency tests complement the above properties of the linearized model in
the case of localized sorption:

1) Db
∗  is independent of b*, u* across the entire region of sorption space loading, and

2) γ∗ µ∗   =  (γµ)u∞b∞   , which is also independent of u*, b* across the entire region of
sorption space loading.

CONCLUSIONS

The theoretical analysis gave evidence that the microdynamic description of sorption
and transport of molecules within the regular lattice of the two kinds of sorption sites is
consistent with the patterns of sorption kinetics of light aromatics (benzene, p-xylene,
p-ethyltoluene) in ZSM-5 zeolites.

The linearized immobilization model derived, including the diffusion in the straight
channels of MFI zeolites and the subsequent immobilization process, appears adequate
for the processing of kinetic curves of light aromatics in zeolites of these types.

The assumption of local equilibrium within the mobile phase was adopted as a work-
ing hypothesis. This enabled the mobility of the sorbed molecules in the straight chan-
nels to be expressed by means of diffusion coefficients obtained from the linearized
immobilization model.

SYMBOLS

b∞ concentration of X type centres (Fig. 1)
b concentration of mobile molecules per unit area in the crystal plane perpendicular to

the space coordinate y, mol m−2

bS concentration b in the crystal surface layer, mol m−2

B1 constant in the Langmuir adsorption isotherm defined by Eq. (27), Pa−1

C molar concentration of component in solution, mol m−3

Db diffusion coefficient of sorbing component in the mobile phase, m2 s−1

Deff effective diffusion coefficient defined by Eq. (50), m2 s−1

f normalized concentration, or relative sorbent saturation
g statistical weight of molecules sorbed in the mobile phase, defined by Eq. (46)
ij mass flux density between planes labelled j and j + 1, mol m−2 s−1

iS mass flux density from the gas phase to the crystal, mol m−2 s−1

ka adsorption rate constant, s−1 Pa−1

kd desorption rate constant, s−1

kbb quasichemical reaction rate constant, m2 mol−1 s−1

kbu immobilization rate constant, m2 mol−1 s−1

kub mobilization rate constant, m2 mol−1 s−1

Kub
∗ effective equilibrium constant

Lb distance of the crystal symmetry plane from the surface, i.e. crystal half width, m
MΣ total time constant of sorption kinetics, s
p pressure, Pa
pA local equilibrium pressure of component A corresponding to concentration CA, Pa
R gas constant, J mol−1 K−1
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T temperature, K
t time, s
u concentration of immobile molecules per unit area in the crystal plane perpendicular to

the space coordinate y, mol m−2

u∞ concentration of “box” type centres (Fig. 1), mol m−2

w energy of pair interaction of two sorbed molecules, J mol−1

y space coordinate along the straight channels, m
z number of neighbouring sites nearest to the given adsorption site in the mobile phase
Γj − 1 , j frequency of jumps from a centre in the plane labelled j − 1 to a centre labelled j, s−1

Γ0 frequency of jumps of a molecule to a chosen neighbouring site for the case of zero
filling of the sorption space, s−1

γ immobilization rate constant, m3 s−1 mol−1

γ* effective immobilization rate, s−1

∆ deviation of a quantity from its equilibrium value
η unoccupied sites fraction in the immobile phase
λ distance of two lattice points (Fig. 2) in the y coordinate direction, m
µ mobilization rate constant, m3 s−1 mol−1

µ* effective mobilization constant, s−1

ν total number of jumps in unit time from a given sorption site to some of the neighbour-
ing sites in the mobile phase, s−1

ν0 ν value for zero loading of the sorption space, s−1

θ unoccupied sites fraction in the mobile phase
Superscripts

0 initial state, i.e. value at time t = 0
* equilibrium state
′ relative to unit crystal volume

Subscripts
A pertaining to component A in solution
b pertaining to the mobile phase
c corrected to the conditions of a thermodynamically ideal solution
j labelling of layers in the crystallographic b axis (space coordinate y) direction
jmax crystal symmetry plane labelling
u pertaining to the immobile phase
S pertaining to the surface layer (j = 0)
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